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1. ‘lhe problem of determining at time T the maximum value of the 

quantity Y,,, U) , a solution of the differential or difference equation 
L,(y) = f(t) under the conditions 1. f(t) 1-4 1, on [ 0, T 1, was con- 
sidered in [ 1,2,3 I i This probl em is considered here under stronger re- 
strictions for the right-hand side of the equation, namely, in the equa- 
tion 

L, (y) E zp + a1 (t) p-l’+ . . . + a, (t) y = f (t) (1.1) 

the function f(t) must satisfy the conditions 

I f @I I < Mo, lfWl<M~ (1.2) 

It is required to determine the function f,(t), satisfying (1.2) and 
providing the largest modulus to the solution y(t) of the equation 
L,(y) = f,< t) at time T. For definiteness it is assumed that 

y (0) = y’ (0) = . . . = y$l’ = 0 

A similar problem was formulated in [ 4 1 under certain restrictions 
imposed on the distance between the extrema of the function (1.5). 
Gnder analogous restrictions for difference equations, 15 1 treated a 
more general problem: it was assumed that 

If 6) I < MO, I f’ 0) I d Ml, If” 0) I < Ma 

The algorithm quoted in [ 6 1 allows one to construct a function f,(t) 
giving the modulus of y(T), generally speaking an extremal but not the 
largest value. These restrictions are removed in the present work. 

The problem formulated above is encountered in the design of control 
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systems when: (1) in regard to the disturbances acting on the system it 
is known only that they are limited in the modulus and the derivative; 
(2) the !Wplication of rougher but simpler evaluations imposes prohibit- 
ively severe demands upon the parameters of the system; (3) the statis- 
tical characteristics of the disturbances are unknown or their applica- 
tion undesirable because of a responsibility of the system. 

The problem of accumulation of disturbances is a particular case in 
the question of optimum control in L.S. Pontriagin’s formulation. The 
difficulties arising in finding the maximal function f,(t) are connected 
with the existence of two restrictions upon the right-hand side of Equa- 
tion (1.1). Therefore, this problem requires special consideration. 

As is known, the solution y(T) of EQuation (1.1) can be expressed in 
the form 

y(T) = i G(T, t)f(t)dt (1.3) 
0 

Let f'(t) = 9(t), then (1.3) can be expressed in the form 

T 

Y P) = \ F (t) cp (q dt, F (t) = i G (T, z) dt 
0 t 

‘Ibe expression for F(t) is obtained upon substitution of 

(i-4) 

into (1.3) and change in the order of integration in the resulting double 
integral. Function F(t) is continuous and differentiable, having on 
IO, T I a finite number of extrema; modulus of F’(t) is bounded on [O,Tl. 

‘Ihe above formulation can also be expressed 
as the following degenerate variational 
problem: find a function 4,(t) belonging 
to a class of functions A satisfying on 
[ 0, T I the conditions 

and giving the largest value to the func- 
tional 

Fig. 1. T 

Y (cp) = \ F W cp 0) dt 
0 

(1.7) 
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2. Let us find the algorithm for the construction of a function c&(t) 
which we will call maximal. First let us introduce some notations. By 
ti(j = 2, . . . . p) we will denote the extremum points of function 
x = F(t), assuming tl = 0, tp+l = T. For definiteness it is assumed that 

t2 and consequently all tj where j is even are maximum points of F(t). 

Let (Fig. 1) 

H = max F(t), t=K4 Tl, z = H - F(t) 

z* = 1 - H - F(t) 1 = H + F(t) 

For even j we introduce functions tjr(z) 
and t . (z), while for odd j the functions 

11 
tj,(z*) and tjl(z+). 

Let j be even, then the quantities 

tjl (2) = tj for z < H - F (tj) 

tjl (2) = tj-_1 for: z > H -F (t& 

tjl(z). for H-F(tj)<z<H-F(t+i) 

are the nearest, from the left of t j, roots 
(Fig. 2) of the equation H - z = F(t) 
relative to t. 

Fig. 2. 

Further, the quantities 

tjr (2) = tj for z < H - F (tj), tjr (z) = tj+l for z > H - F (tj+l) 

.tjr (z) = z for H-F (tj) < z < H - F (tj+l) 

are nearest, from the right of tj, roots of the equation H - z = F(t). 

Let j be odd, then the quantities 

tjl tz*j = tj for Z* < H + F (tj), tj[ (2') = tj-1 for z’> H + F (tj-I), 

tjr (z*) for H + F (tj) < Z* < H + F (tj-i) 

are the nearest to the left of tj, roots of the equation H + F( t 1 = z*. 

Furthermore 
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tjp’(z*) ZL tj for z*< H -j- F(tj), tjr (2.) = tj+1 for z* > H -!- F (tj+l) 

tjr (z*) for H + F (ii) < z* < H + F (tj+l) 

are the nearest, to the right of t j, roots of the equation H + F(t) = z*. 

Assume 

hj (z) = tjr (z) - tjZ @)7 6j (2‘) zz tj, (Z*) - tjl (2’) 

Introduce functionals (Pij(z, z*) dependent on the parameters u, where 
indices i, j may assume all possible integer values from zero to p, but 
for each of the functionals i < j. 

Functionals cPij(z, z*) are defined by the sets of all positive, con- 
tinuous, monotonically increasing, in a strict sense, functions Z = yl(U), 

z* = y2(u), where ~~(0) = ~~(0) = 0. If z + z* < 2H, then 

@ij (2, z ‘) = i’ 6k (2) - k& 6k (2:) (2.1) 
k=i+l 

The first sum contains terms with even, while the second sum has terms 
with odd values of index k. 

If the inequality 

~a + ~a* = 71 (~a) + ~2 (~a) = 2H 

is valid for some u,, then for u > ug, and consequently for z > zo, 
z* > z=* 

@ij (2, Z*) = i’ 6k(z,)- i* Sk(‘G*) (2.2) 

k=i+l k=i+l 

The first sum in (2.1) is equal to the sum of interval lengths between 

tj+l, t and tj,’ where F(t) >/ z; the second sum is equal to the sum of 

interval lengths between t j+l, 1 and tj~’ where F(t) < z*. 

The maximal function c&(t) is constructed stepwise with the aid of 
the functionals ai j(z, z’) . 

First step. Assume z = z* = u and let al be the first value of u upon 
increase from zero, for which the inequality 



Accuaulation of disturbances in linear system 471 

would be satisfied for at least one function ~~i(u, u), where (D,j(U, U) 
increases at a certain nei~~rho~ ‘to the right of the point u = aI. 

‘Fig. 3. 

rty Ea+ we denote the system of intervals belonging to 10, Tl on which 

F(t) > H1- a I, while by E&i we denote the system of intervals from f O,f 

on which F(t) < -.H + al.Assum~ (Fig. 3) 

qpa,(t) = M1 for TV E,,‘, CPat (t) = -MI for t G ES,- 

(pa, (t) = 0 for t ES [O, T] - &+ - E,,- 

If al = H, then Qsil ( t 1 is the maximal function, where al = H. If 

a1 < H, then ##(t) coincides with sb, (t) only on the set 
1 

In the following steps #=(t) 

Note that if QOj(al, 

will be defined on the set I: 0, T 1 - Eal. 

alI. = Co then (Fig. 3) 

Thus, in order to carry out the first step it is necessary to con- 
struct functions ‘~j<u, u) (j = 1, . . . . ~1 and determine the quantity 
u=a 

1’ for which, at least for one j, the modulus l@,,j(u, ~11 = C, for 
U =.a1 and which increases with increasing u. 

Secorxf step. In the general case for u = a1 the following system of 
equalities may take place: 
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@OS, (a,, a,) = @oi, (a,, aI) = . * . = @oi, (a,, al) = c, 
@ oi,+l (at, @h) = @oia+2 Cal, al) = - . - = @oib (%7 al) = - Co (2.3) 
Q&l+1 ($7 al) = @~)ib+~(%, al) = . . + = @oi, (al, al) = Co 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

‘Ibe system of equalities (2.3) h as N such rows. Each row contains at 
least one function. lhe functions in (2.3) are distributed so that their 
indices satisfy the inequality i, < i, < . . . < ia < ia+l < . . . < ib < 

ib+l . . . < ic < . . . For any function from an odd row, BOj(u, u) increases, 
while for any function from an even row it decreases in some neighborhood 
to the right of the point u = aI. If 

1 @o,j-1 (a,, 4 I = I @oi (a,, 4 I, @o. j-1 (u, u) = @oj (4 u) 

at some neighborhood to the right of the point u = aI, then in the system 
of equalities (2.3) only @a, j_l(al, a,) is included. 

Let us consider @ai1 (2, z*) for quantities z and Z* greater than aI. 

From the relation 

@Oil (2, z*) = c, (2.4) 

we will find at some neighborhood to the right of the point z = a1 the 
function z* = fiOil(z). From the definition of @‘oi (z, z*) it follows that 

1 
as long as z + z* < 2 H, the function 6ai (z) is defined uniquely and at 

1 
some neighborhood to the right of z = aI, the inequality Z* = 3,i (z) > z 

1 
is valid. 

If in the increase of z 

a = 2H is valid, then for 

. . 
Note that if in @,,i, (z, 

XV Sk(z’) = c) for 
k=l 

Let us consider QOi2(z, 

from aI for some a the inequality f~ ai1 (a) + 

z > a we let’ SO il (z) =8ail(a). 

z+) the sum 

2 > al, z* > a,, then Goi, (z) = 2H - c11 

z). From the relation 

@oi, (z9 z*) = co (2.5) 

we find the function z* = &a i (z). 
2 

If ~oi2(‘) ’ ~.gil(‘) in the neighborhood to the right of z = al, 
. 
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then for subsequent constructions we will utilize only the function 

8,i2(z). 

If ~OiZ(L) < 6,il(~), then from the relation 

@ilit(Z, Z*) E @&(Z, Z*)- cf)& (2, Z*) = @i,&(a,, a,) = 0 (2.6) 

we find in some neighborhood to the right of z = al the function 
t*=a. ,liz(z) (th is is possible since otherwise @ai (al, aa) would be 

larger than Co>, and utilize further the functions k,,il(~) and 8ili2(r). 

Assume now that in the first row of the system (2.3) all functionals 

uP to 'ai, including (i,, < ia) have been considered and that for further 

construction the functions 

remain, where i, < i 
the right of z = al 

P 
< i, < . . . < i, < i,, and in the neighborhood to 

&oi, (z) > fii,ip (2) > . t . > 3itLi, (2) 

From the relation 

@Oi, (z, z*) = @Oi,(%, a,) z Co (2.8) 

we find the function 6,i (z). If 6,i (z) in the neighborhood to the 

right of z= a is larger t2(an 6 . . but is less than the preceding 6 . . 

function from (2.7), then for s:ikquent constructions we retain all 
‘et/J 

functions from (2.7), preceding 6 . . z , and the function 6 . 

which is found from the relation 

s,rp( ) Ig iv(‘) 

@i,i, tz, 2’) 5E @oi, (2, 2’) - ~Oi, (2, 2’) = 0 (2.9) 

We will consider thus all @spdi 
k 
from the first row of (2.31 and deter- 

mine the corresponding functions ~ij(z). 

Let us consider now the second row of (2.3). From the relation 

ia g ia, < ia+ we find the function z = 'tii ,i a .a+l(z*). 'lhe index iat 
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is determined as follows: 

At some neighborhood to the right of the point al the relation 

‘oi (u> u) = @,,j(u, u) is satisfied identically with respect to the argn- 

men: u for all B .(u, u) and ia ,( j < ia), 
but smaller thanOia+r, 

while for the index j > ia), 

the inequality Qoi (u, u) > a0 j(u, u) is satisfied 

in any arbitrarily small neighborh~d to he right Wig. 3) of the point 

Ql. 

Next consider a0 ia+ (2, t*) . From the relation 

@Q i,, +.2 (z~ Lq = C&Q2 (2, z*) - Cq)i,, (2, z*) = - 2c* (2.11) 

we find z = 6 + . zpa+p If t a some neighborhood to the right of 

z* = a I the function 6 . Ig* i,+2(z*) is greater than 6 ia, ia+r(Z*) we re- 

tain one function 6 ia,i,,(s*). In the opposite case we find from the 

relation 

the function z = 6 . ra+lia+2Cz*). Furth er, we will consider functions 

6 i , i 
a a 

+1(~*) and 6 id+li=+21Zf), etc. 

Using the analogous reasoning, it is possible from row to row to con- 

sider all functions included in the system of equalities (2.3) and to 
construct at some neighborhood to the right of the point u =,a]. the 
system of functions z = 6 ii(u) and z* = I?.,~(u), 

Let us locate all Q..fz, z*), used for the determination of the system 
of functions @. . 

11’ 
in t ‘h e order of ascending indices 

@i,j, (2% z*), @i,j,(z, z*)+ - - . 7 @i,j,(z, 2’) (2.13) 

Substituting in each element of (2.13) the functions G,,(U) in place 

1 
of the corresponding arguments, we will obtain the fnnctioig 
<pij( fiij(u), u) or ‘Pij(u, 6 ij(u)). If in (2.13) jk < jk+ll then we wil 

add to the sequence (2.13) the function Cp. . 
Jklk+l 

(u, d, inserting it be- 

tween Q. 
‘kjk 

and @. 
'ktljktl‘ 

lhe result is the sequence 
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As was pointed out above, to each Cp. 
1 k-ljk 

from (2.14) corresponds a 

function 6 j, Ijk(n)’ lh 
ese functions form the sequence 

6j,j,~ 6j,j,l 6izjS, * * * , 6j,_,jp (2.15) 

Let jk < j C jk+l, where jk and jk+l are indices of some function 

ip jkjk+l(u) from (2.14). 

If @ jkjk+l(u) = (Pjkjk+l(u, 6 jkjk+,(u)), then let ~j(u) denote the 

function 

@j (u) = i @ji_rji (u) + @jkj (u, 6j, jk+, (It)) (2. 
i=l 

If 

-6) 

then 

@jk jkfl C”) z @jk jk_tl (8Ejkjk+.1 C”)7 zJ) 

@j (u) = i @ji_, ji (U) + @j,j (fljkjh.+l CzL), u, 
i=l 

(2.1’7) 

If j = j, then the functions Q. = $ @. 
‘k i= 1 Ii-Iii 

(u) form a sequence 

‘Iheir indices form a sequence 

All elements in (2.19) can be divided into N groups according to the 
number of rows in (2.3). In each group the elements jk are distributed 
in the order of ascending index.k, while the indices in the elements of 
the ith group are smaller than the indices of the i + 1 group. Let jk 
belong to the ith group from (2.19), then Cp. , Cp. . , 6.. . belong 

to the ith groups of the sequences (2.18), ;~.141t-~:tl~).‘~i1~j~jk+l 

belongs to the ith group and is determined from the relation 

as functions of 2, i.e. 6 . 
lkjk+l 

=6 jkjk+l(z), then the remaining func- 

tions of this group are also determined from the corresponding relations 
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as functions of z. If, however, 6 . 
Jkjk+l 

is defined as the function of 

z*, the remaining functions of this group are likewise defined. From the 

scheme of construction of functions 6 . 
Ikjktl 

it follows that: 

1) At some neighborhood to the right of the point u = a1 for all u 

the functions 6jkjktl(n) f rom one group vary monotonically with the in- 

crease of index k, while at the same time, the difference 6 
jkjk+ltu) - 

6 
ik-ljk(u) d 

oes not change sign with the increase in a in the region of 

this neighborhood. 

2) In this neighborhood .6 jkjktl(u) > u for any k. 

3) All Qjb(u) belonging to this group are identically equal to each 

other at the neighborhood to the right of u = al. 

Note that 

jk+l jk tl 

@jk jkll(‘) ‘jk jk+l C”)) = T]’ b(U) - xfl bi(+j,jk+l(U)) 

i=jk+l i=jk+l 

jk+l 

@j,j&+1('jkj,+i(u)9 U) = 2' 6i(fijkj,+,(U))- ‘9 hi(U) 

(2.20) 

j=jki-1 i=jk+l 

where each sum is a monotonically increasing function of the argument U. 

Let us denote by Eat the system of intervals defined by the sum of 
the first components of all functions from (2.14), and by E,- the system 

of intervals defined by the sum of the second components of all functions 

from (2.14). From (2.20) it follows that if al < u1 < u2 then 

&,+,c &,+ c Et& El,- c E,,- c Et,,- (2.21) 

Let us define now the function 56,(t). 

I, = Ml, if t=Eu+; vu(t) = -Ml, if’ tcz E,- 

CPU (t) = 0, if tcz[O, T]-Eu+-EE, 

From (3) above it follows that c+,(t) belongs to class A of the func- 
tions considered; it is easy to show that Y(q5,) increases with the in- 

crease in u. All this is valid at some neighborhood to the right of the 

point u = aI. ‘Ihe second step ends when u = a2, if for this value of u 

at least one of the following four cases occurs: 
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A) It may be that for y = a2 

a,,+ +j, jk+l (as) = 2H 

for all functions from (2.15). In this case we consider that $aZ(t) co- 

incides with the maximal function 4,(t), the construction of which is 

thus completed. 

B) Let jR < j < jk+l where jk and jk+l are the elements from (2.191, 

then it may be that\? (a,)\ = C, and(@j (~11 increases to the right of 

u=a 2. These relationships can take place simultaneously for several j 
lying between jR and jk+l and for several values of the index k. 

C) For one or for several values of k and for u = a2 the difference 

6 jbjb+l(u) - fijk_lj(u) changes sign. It is assumed that 6 jL_lja(U) 

and 1~ jLjk+l(u) belong to one group from (2.15). 

D) For u = a2 the difference 6 
ibjk+l(u) - 

u changes sign for one or 

for several values of k. If for u = a2 at least one of the cases (B), 

(C) or (D) takes place, then in order to define &,(t) for u >.a2 it is 

necessary to transform and augment the sequences (2.14), (2.151, (2.181, 

(2.19) according to the following rules. 

Let us assume case (B). Depending on the sign of (Pi(az), @jk(az), 

0 jk+l(az), there can be eight cases which can be represented by the 

following scheme: 

1 23 45 6 78 

q,= co co co co -cc0 -cc0 -cc0 -co 

mj = co --co + co -cc0 + co -cc0 +c, -cc0 

Q1 = co co -co -co co co -co -co 

Consider Cp. 
jkjk+l 

(z + z*). For u = a2 there will be 

either (a) z = a,, 2* = tijkjk+,(aT) 

or (b) Z* = a2, z = +j* jk+l tad 

In case of (a) at some neighborhood to the right of z = a2 we find 
z* = 19, jkj(z) from the relation 

@j,j(z, z') = @j(az) - @j,(a,) 

From the relation Q.. 
" k+l 

(z, z*) = @ jk+l(az) = (Pita,) we find 
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Z* = tijkj(z); and in the sequence (2.14) in place of 0. 
JkJk+l 

(~1, 

6 
jkjk+l(u)) 

we substitute ~j,j(u, 0 ikj(u)) and Qjjk+l(~, 6 jjk+l(~)); 

in (2.15) in place of 6 . 
Jkjktl 

we substitute 6 jkj(u) and ‘jjkt,(u); in 

(2.18) and (2.19) between Qjk and Qjktl, jk and j,, 1 we insert correspond- 

ingly Qj and j. 

In case of (b) we find from the same relationships the function 
z = fijkj(z*) and z = 6 jjk+l (t*) and repeat the same procedure as for 

(a). l 

If between @. and Cp. 
Jktl 

of the type ( @.$,)I = C,, 

for u = a2 there are valid several relations 

at the start o ! 
we then utilize the same method which was used 

the second step for determination of 6 ..(u), and intro- 
duce into the sequences (2.14), (2.15), (2.18), (2.19) &responding 
corrections. 

Assume that case (C) occurs and let, for example, 6 . 
jk-ljk 

be deter- 

mined from the relation @. 
Jk-ljk 

(2, z*) = Q. 
Jk-ljk 

(a,, a,) as a function of 

z. Then from the relation @. 
Jk-ijktl 

(z, z*) = Q, jktl(al) = (Pik_l(Q1) we 

find the function z* = 6 
jk_ljk+l(z) 

in the neighborhood to the right of 

z = a2. 

In (2.14) in place of @. rk_ljk(uJ .,* jk_ljktu)) 

we substitute Cp. 
Jk_ljktl(u> 'jk_ljktl(U)); in t2 

and 6 
Jkjk+l 

we substitute 6 
Jkljktl 

in (2.18) 

a. and j,. 
Jk 

and 

.15) 

and 

Assume that case (D) occurs, i.e. 6 
Jkmljk(‘) - 

u changes sign for 

u=a 2. Case (D) can have several versions: 

1) In (2.15) 6 jk ljk is the function furthest to the right, or to 

the right of it is only 6 . 
‘kJkt1 

I U. 

In this case in (2, 

B. 
Jk_ljktl(u) E U, in 

tute @. 
Ik-ljktl 

(u, 4; 

.15) in place of 6 . 
Jk-ljk 

and 6 

(2.14) in place of @. 
Jk-ljk 

and 

in (2.18) and (2.19) we strike 

jkjktl 
we substitute 

@. 
JkJktl 

we substi- 

out 0. 
Jk, 

and jk. 

2) The function 6 
Jk-ljk 

belongs to the ith group from (2.15), and to 

the right of it in this group can be only the function 6 jkjktl(u) E a; 
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let, for example 

Then from the relation 

we find z = 6 
ik_ljb+l(z*l; 

substitute in (2.15) in place of 6 j~_lih(a) 
and 6 jbjk+l(u) the function 6j, Ijk+l(U); in (‘2.14) substitute 

cp. 
lk-ljktl 

in place of 0. 
Jk-ljk 

and @. 
@k+l’ 

etc. 

3) Ibe function 6 . 
Jk-ljk 

is the furthest to the left in the ith group 

from (2.15). Let, for example 

a, jk-1 jk (‘i&.-l jk (‘)F ‘> = @)jk__t jk (a,, a,) 

If 6. 
jk_Zjk_l(u) E 

u, then from the relation Qt. 
rk-zjk ’ 

@. * (al,.a,) .lk-Zjk 
we find the function z = 6 jk_zjk(z*); I: 

substitute 6 jk_2jk(ul in place of @jk_pjk_l and +j,_,j, 

we substitute Q jk_2jk(nl '*jk_sjk(u)l in place of @jk_2jk_ 

u)s etc. 

z*) = 

(2.151 we 

; in (2.14) 

(u, u) and 
1 

I(~) +I u then, from the relation Qjk ljk(ZI t*J = 

a,) we will find z = 6 jk Ijk(z*) and in (2.151 WC? substitute 

6 
jk_rjk( ) 

u in place of the previous function with the same index; in 

(2.I4) substitute Q, 
jk_ljk(u3 ' . 

,k-&(")f 

in place of Q, 

(~1, u) (the functions 6 
jk-lik( ‘jk-ljk 

jk_ljk( ) 
u are different in the last two ex- 

pressions). Thus alI cases have been considered which can occur when 
u=a 2‘ 

‘lbe thus-tr~sfo~d sequences (2.141, (2.151, (2.181, (2.19) form 
new sequences which can differ from the original ones only by the number 
of groups. Utilizing these new sequences it is possible to determine 
a&(t) at some neighborhood to the right of u = a2, If for u = a3 case 
(A) applies, then +a3( tl coincides with the maximal function; if however, 

for u = a3 any one of the cases (B), (Cl or (D) applies, it is necessary 
to transform the new sequences obtained as shown above and to determine 
$u(t) for u > as. The construction of (P,(t) will be completed if for any 
one of the analogous steps for 0 < u < H the case (A) will apply. Since 
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F’(t) is bounded on [ 0, Tl there will be a 
necessary in order to construct the maximal 
for constructing 4,(t) has been indicated. 

finite number of steps 
function. Thus, the algorithm 

3. We will prove now that the previously constructed maximal function 

4,(t) indeed gives the largest value to the functional (1.71. Let 4,(t) 

be an arbitrary function of class A; we will prove that 

Y(%J-Y(%)W (3.1) 

From Section 2 it follows that if on [ 0, T 1 there is no such point 
t,, for which 

ifm(to)( = /qFm(t)dti = A!!,,, then Cp, (t) = M, sign F (t) 

0 

It follows isunediately from (1.7) that in this case +a,(t) yields the 
largest value of the functional Y(4). 

Let us consider the most general case. From the construction algorithm 

for +s(t) it f 11 o ows that for f,(t) there can be the following relations 

Fig. 4. 

(see Fig. 4, where on the intervals denoted by the solid line $m = M,, 
dotted line q5s = - 1,; outside of these intervals ~$a = 0; t3 = t i, 

t5 = ti 2 t, = ti > t10 = ti 1 t12 = tis)’ 
2 3 4 

1) At points t,, t2, . . . , t i, the equalities 

fm (tl) = jn (t2) = * - * = fm (ti,) = Mt) (3.2) 

are fulfilled, while at some neighborhood to the left of each of these 
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points f,(t) < 1,. There are i, numbers h, > h, >/ . . . > hiI 3 0 such that 

qrn (t)= MI sign (F (t) - k) (3.3) 

‘Ihe function &(t) = M, sign (F(t) - hz) on the interval (t,, tZ), 
with the exception of the interval (t,, t,‘J E (t,, t,) where tl’ is 

nearest to tl point of intersection of function x = F(t) with the straight 
line x = h,; on this interval 4,(t) = 0. 

Function 4,(t) = M, sign (F(t) -.h3) on the interval (t,, t,), with 

the exception of the interval (t,, t,‘J where t2’ is nearest to tl point 

of intersection of function x =, F(t) with the straight iine x = h,; on 

this interval r+,(t) = 0, etc.. 

2) At points til+l’ ti +2 m ss 
l 

ti 
,2 

the following equalities are ful- 

filled: 

fm k+d = fna (ti,+z) = . . . fm (ti,) = MO (Q‘ < %+I < %,+a < * * * < $,) (3.4) 

With regard to this group of equalities and determination of the func- 

tion g%,(t) on the corresponding intervals, it,is necessary to repeat 
literally everything as in the previous case, with the only difference 
that 

3) At points ti2+1, ti2+2, *m-t ti 
3 

the following equalities are ful- 

filled: 

fm(ti2+l) = f7Tl(ti,+2) = . * . = fm(ti,) = -MO (3.5) 

where at the same time f,(t) > - 

points ti2+1J ti2+2> 

1, at some neighborhood to the left of 
. . . . t. 

l3’ 

Function 4@(t) is defined on the intervals (t i +L, ti . . . 

tti3-lJ ti3) in the same way as previously, but h&e 
2 
+J 

o>h.>h,-~>. . * ),&+I (3.6) 

4) At points t i . . ., t. 
3 
+I, t i 

3 
+2, 

‘4 
the following equalities are 

fulfilled: 

fm (t&+1) = fm (h,+z) = * - . = fm (h,) = -M, (3.7) 
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Everything is determined as in (31, the only exception being that 

5) At points til+l’ ti +2, -ev) 
4 

ti 
5 
the following equalities are ful- 

filled: 

Here one should repeat literally everything that was said in (1). Next 

follow equalities (6) coinciding with the equalities in (2), etc. 

Figure 4 shows such a function f,(t). Let us show that 

ti,’ 

\ w (Trn -p)dt),O 

'0 
(3.10) 

where t. 
‘1 

’ is the root of equation F(t) = 0 nearest to t- 
Zf 

from the 

right. 

& Aj, Ai'; Aj"ej = 1, . . . . il) let us denote the following systems 

of intervals belonging to (0, t. QJ ( see Fig. 5, where the intervals from 

(tl” t,‘J are indicated with double lines forming A,; (t,, t,‘) is &", 

all other intervals from (tl‘> t,') form AZ'_): 

Fig. 5. 

a) Aj +-Aj'.e.A T- (tj_l*j tj)* 

b) If t E A then IF(t)\ > h. and &6,(t) = N, sign F(t); if t E A.i'- 

then IF(t)\ < hi 

#Jt) = 0 'hi'. 
and +m(t) = - k,; if t G'Ajy.then hi >/F(t) 3 hj+l and 

is the interval (tj, tj’)). 

From above it follows that 
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ix 

F(cpm -vr)dt+ 5 F(cpm -qr)dt+ 1 F(-~4dt) 
j Aj' Ai" 

‘Ihe integrals on the right-hand side are evaluated along the intervals 
contained in Ai, A.‘, AiT Utilizing the generalized theorem about the 

mean, it is possib e to show that i 

s Wcp,-cpr)dt = I WA s Ivm-wW (aj E Aj) 

Ai Ai 

i F(cpm - (pp) dt = F (bj) 1 (cp, - cp,) dt (bj GE Aj’) 
Aj’ 

1 F(-p)dt= F(q) dr’ (-q+)dt (cj E Aj”) 
Aj” Aj” 

Iherefore 

k,’ 

s 
F (qm - cpr) dt (3.11) 

0 

4 

=z (Im)l 5 I (em - cur I dt + F (4) \ (cpm - rpr) dt + F(q) \ (-(pp)dt} 
j=I Aj “j’ Aj” 

Note that J (4, - c$~) dt < 0, since 46,(t) = - M, on Aj’. It is 

obvious that 
Aj’ 

i (@,,-q;)dt + 1 (pn-qr)dt+ i (-cpr)dt}>O (k=l,...il) 
j=l Aj Aj’ Aj” 

Let for some k < i, be shown that 

i {IF(q) 1 \ \(pm-vrldt + F(h) \ (wn-v(Pt)dt + F(q) \ (-vrWl(),O 
j=l Aj Aj' Aj" 

We will show that a similar inequality takes place for k + 1. Indeed, 
let 

j (--rpr(t))dt<O ” 
'k+l 
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Then if 

j (cpm- s)dt> 
Ak+; I j (cpm - cpr) dt -t- j (--rpr) dt 

'k'+l 
I, 

'k+l 

it follows from the inequality (F(c~~+~)( > max ()F(bk+l)l, F(Ck+l)) that 

I F (al,+,) 1 i I (pm - cur I dt + F @k+l) i (cpm - cpr) dt +- 

Ak+l 
‘k+l 

+- F (Ckfl) i (- 0,) dt > 0 
I 

‘k+l 

If 

i (cpm---r)dti 1 ((Pm--CPr)dt+ \ (-cp,)dt 
Ak+l 

, 

‘k+1 

,t 

‘k+l 

then from the inequalities 

‘:( j (w-ddt + j, ((Pm-qr)dt + j (-qrp,)dt)>o 
j-1 Ai Aj' Aj" 

max ( 1 F (bk+l) 1 , F (ck+l)) < $f ( 1 F (ad t 9 F (Cd) 

it follows that 

k+l 

cpr 1 dt + F (bj) j (cpm - cpr) dt+ F (cj) j ( - q,.) dt) > 0 

Aj’ Aj” 

'Ihe inequality 

Ip( \i(pm--%/dt+F(h) \ (q~~-q~)dt+F(cJ 1 (-qr)dt>O 
Ai AI‘ A,” 

follows from 

c (cpm - (or) dt > 0, 
AI+&‘+&~ 

I F (4 I > max ( I F U4 0 F (cd) 

'thus, the inequality (3.10) is proved. It is proved analogously as 

well as when 

\ 
9: 

(-vr)dt> 0 
Ak+l 
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lben one considers the interval (t. 
%I 

li t. 13’), where ti ’ is the root 

of equation F(t) = 0 nearest to ti, from the right. It cd be shown that 

G,’ 

c WPm-~(pr)>O 
J 

1. ’ 

The proof of this inequalrty is analogous to 
therefore omitted. Note only that for the proof 
ities of the form (3.8) and the inequality 

'i 

(3.12) 

that of (3.10) and is 
one utilizes the inequal- 

s (qh-cpr)dt<O (i=izfi, iz+2,...,4 

ti,’ 

Next, one considers the interval ftig” ti 

ity 

5’.) and proves the inequal- 

t’i. 

5 ( F vm - (pr) dt > 0 etc. (3.13) 

‘i,’ 

All these inequalities are proved analogously to (3.101. Since the 
number of such intervals is finite this proves the validity of (3.1). 

It may be that the limiting equalities for f,(t) will start not from 
case (l), as was shown above, but from any of the following cases. 
Furthermore, case (1) may be followed immediately by case (31, etc. l-low- 
ever, the proof of (3.1) remains unchanged. 

Exarple. In the equation y +’ 2i +: 100~ = f(t) for T = 1 y,,,(l) = 4k 

under the condition 1 f( t>l 4 100k; ym,,(l) = 3.3k under the condition 
1 f( t>l ‘4 look; 1 f’(t)] ( 830k. 

Note i. The algorithm for constructing qSa(t) presented above can also 
be s;pplied in the ease of a linear difference equation; in contrast to 
the presented case, however. r&(t) may not be the only function giving a 
maximum to the solution at time T (see [ 5 I). 

Note 2. If only a few steps are required for the determination of 
#s(t), this can easily be accomplished graphically. In the general case 
it is not difficult to program the evaluation of #a(t) and Y,(t) on an 
electronic digital computer. 
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